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ABSTRACT 
A lower bound on heritability in a natural environment can be determined from the regression of 

offspring  raised in the  laboratory  on  parents  raised in nature. An estimate  of  additive  genetic variance 
in the laboratory is also required. The estimated  lower  bounds on heritabilities can sometimes be used 
to  demonstrate a significant  genetic  correlation  between two traits in nature, if their  genetic  and 
phenotypic correlations in nature have  the same sign,  and if sample sizes are large,  and  heritabilities 
and  phenotypic  and  genetic  correlations are high. 

A recurring  problem in evolutionary biology is the 
relationship of parameter estimates derived 

from  laboratory or greenhouse studies to  the evolu- 
tionarily relevant  parameter values in nature (PROUT 
1958; MITCHELL-OLDS and RUTLEDGE 1986). With 
some exceptions (e.g., BOAG and GRANT 1978; SMITH 
and DHONDT 1980; VAN NOORDWIJK,  VAN  BALEN and 
SCHARLOO 1980; SHAW 1986; MITCHELL-OLDS 1986; 
GIBBS 1988), heritabilities and  other genetic  parame- 
ters  are estimated under controlled  laboratory condi- 
tions designed to minimize environmental  variation. 
The laboratory may  also differ  from  natural  environ- 
ments in  ways that  alter  the relative values of different 
genotypes, causing genotype-by-environment interac- 
tion that can bias estimates of heritabilities and genetic 
correlations (FALCONER 1952; GUPTA and LEWONTIN 
1982; VIA 1984; SERVICE and ROSE 1985). These 
parameters may also differ among  natural  populations 
of a single species (LOFSVOLD 1986; DINGLE,  EVANS 
and PALMER 1988; COHAN and HOFFMANN 1989); 
and, within a  particular  population, they can be af- 
fected by spatially and temporally varying conditions 
(SERVICE 1984; SERVICE and ROSE 1985; GILLESPIE 
and TURELLI 1989; PROUT and BARKER, 1989). To 
gather  more  information  on  the variation of these 
parameters, it is important  to  develop  estimation tech- 
niques that  circumvent the difficulties of estimating 
genetic  parameters in nature.  In  the following, we will 
treat  the  parameter values in nature  and in the labo- 
ratory as constants, but  our  method can be used to 
test this assumption. 

In  an  appendix to COYNE and BEECHAM (1987), 
LANDE showed that  bounds  could sometimes be set 
on heritabilities in nature by regressing  offspring 
raised in the laboratory on  their  parents raised in the 
natural  environment.  This  bound,  however, only ap- 
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plies when the estimated  additive  genetic variance in 
the laboratory is  less than  the  estimated covariance 
between  offspring in the laboratory and  midparent in 
nature.  Here we extend LANDE’S approach  to show 
how a lower bound  on  the heritability in nature can 
often  be  estimated even when LANDE’S condition is 
not  met. Also, this lower bound can sometimes be 
used to  obtain  information about  the genetic  correla- 
tion in nature.  Throughout  our analysis, we assume 
that  the distributions of breeding values for  the traits 
of interest are Gaussian, that  the  trait values are scaled 
so that males and females have the same means and 
variances, and  that maternal effects, epistasis and se- 
lection are negligible. 

HERITABILITY 

In LANDE’S notation,  the regression of laboratory 
offspring on  midparent  from  nature is 

where y is the additive  genetic  correlation between 
the  trait in nature  and  the same trait in the laboratory 
(FALCONER 1952), aiL and aiN are  the additive  genetic 
variances in the laboratory and in nature,  and u;N is 
the phenotypic variance in nature. To obtain  a lower 
bound  for  the heritability in nature, h; = U;N/U$N, 

note  that 

An estimate, VpN, of & can be  obtained  from  the 
phenotypic variance of the  parents  from  nature.  (This 
may differ  from  an  estimate  derived  from  a  random 
sample in nature, if some  phenotypic classes do not 
mate or are infertile.) An estimate VAL of ait can be 
obtained  from  parent-offspring regression when both 
are raised in the laboratory, or from  the variance 
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among half-sib families in the laboratory  (FALCONER 
198  1, Ch. 10). If b is an empirical estimate of P ,  then 

is an estimate of y 2 h i ,  which is a lower bound  for 
both h i  and y2. If, as is often  true, only mothers can 
be identified in nature,  the squared regression coef- 
ficient of offspring on  parent  should  be multiplied by 
4 because the regression on  one  parent is half that  on 
the midparent  (FALCONER 1981, p. 151). If the esti- 
mate VAL is inflated by dominance,  common  environ- 
ment, or maternal effects, e.g. ,  if VAL is derived  from 
full-sib covariances in the laboratory, the lower bound 
derived  from (3) becomes more conservative, unless 
the estimate of , f 3 ( o L . f N )  is also affected, as by maternal 
effects. Estimate (3) is available whenever VAL is non- 
zero. The bound  for h i  is best when y2 is large and 
useless when y2 is zero, but  the magnitude of y2 will 
be unknown unless covariances among relatives in 
nature  are available. Note  that if h i  = 0 then aiN = 0 
and y is undefined, so an  estimate of / 3 ( o L . f N )  that  differs 
significantly from  zero,  regardless of sign, is sufficient 
evidence for h$> 0, but does  not reveal the magnitude 
of h i .  

y 2 h i  can be viewed as an  approximation to h i  that 
is biased when I y I # 1.  Another simple approximation 
of heritability in nature is the  ratio of the additive 
genetic variance in the laboratory to the phenotypic 
variance in nature, h; = &/b&. This approximation 
avoids bias arising  from I y I # 1,  but  not  that  arising 
from  differences between u:L and d N .  When the 
offspring-parent regression P(oL.pN) is used as an ap- 
proximation  for h$, both kinds of bias are present. 
Unfortunately,  these two biases cannot  both  be readily 
eliminated by any of these  approximations. The rela- 
tionships between these three approximations of her- 
itability can be  understood by considering  their ratios: 

- h2 " - - P(OL.PN) = (%) 1 (4) 
P(oL.pN) y2h$ VAN 7' 

If I k I < 1,  then because I y I < 1, u:L < u:N showing 
that  additive genetic variance is larger in nature  than 
in the laboratory. This is LANDE'S  criterion in COYNE 
and BEECHAM (1987).  When this relationship holds, 
h; < I & o L . p N ) l  < y2h& so that  the lower bound 7%; 
is larger  than  the  other two approximations and these 
are therefore  too small. If Ikl > 1 then, as  LANDE 
noted,  nothing is known about  the relative magnitudes 
of genetic variances in the two environments; but 
y 2 h i  can still be estimated. Also, when I k I > 1,  then 
h; > (P(oL.fN)I > y 2 h i ,  so that  the lower bound y'hi 
is the smallest  of the  three approximations. One of 
the  other approximations  could  then  be the closest to 
h i ,  but  the  data  provide no way of deciding  whether 
or not this is so. 

ASSORTATIVE  MATING 

These estimates can also be used when parents have 
been  mated assortatively, if one is willing to assume 
that all genetic variance is additive. The slope of the 
parent-offspring regression is unchanged by assorta- 
tive mating within a single environment (FALCONER 
198  1, Ch.  10;  for  exceptions see GIMELFARB  1985). 
This is also true across environments. Let be the 
midparent  phenotype in nature, Mo(L) the  expected 
phenotype of their  offspring in the  laboratory, Ps(W 
the sire  phenotype, P D ( N )  the  dam  phenotype,  and r 
the  phenotypic  correlation  between  parents due  to 
assortative mating. Because we are interested in lab- 
oratory-reared  offspring of parents  from  nature, we 
must regress the  parents'  breeding values for  the  trait 
as expressed in the laboratory on  their  phenotypes in 
nature.  Denoting  these  sire and  dam  breeding values 
by As(L) and AD(L) ,  the regressions are 

As(L) = P L N P S ( N )  + Rs ( 5 4  

and 

AD(L) = P L N P D ( N )  + RD. (5b) 
The regression coefficient, P L N ,  equals /3(oL.pN) from 
(1). The residuals Rs and RD are independent of each 
other  and  the phenotypic values, and each has vari- 
ance u:L[l - ( r 2 f l 5 N / & ) ] .  In this notation, 

M P ( N )  = % ( p S ( N )  + p D ( N ) )  (6 )  

and 

= constant + %(As(L) + AD(L)). (7) 

Thus, 

COV(MP(N), M O ( L ) )  

- - % ( P L N u f q N )  2 + PLNCPmw 2 + 2 ~ L N r ~ f s , , ~ f D , , )  

(8) 
= !~~uAL~AN(I + r), 

which, if L = N ,  is % d ( 1  + r ) .  Similarly, the variance 
of the  midparent values is 

Var(Mp(N)) = YzuN(1 + r ) .  (9) 

Thus, assortative mating has no effect on  the slope of 
the offspring-midparent  regression,  either within or 
across environments, because both  the  numerator (8)  
and  denominator (9) are multiplied by the same factor, 
(1 + r). [This  need  not  be true if our assumptions are 
not  met;  for  example, if regressions are nonlinear 
(GIMELFARB 1985).] 

Sib covariances, however, are affected by assortative 
mating  (FALCONER 1981, Ch. 10). For  example, the 
covariance of full sibs  in the lab is the variance of (7), 
1.e., 

COV(O~, 0,) = %&( 1 + ry'hi).  (10) 

If the  natural  and laboratory  environments  are  the 
same, so that y = 1 and UZL = h: a&, then  (1 0)  is the 
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basis for the standard estimate of h2 with  assortative 
mating (FALCONER 198  1, p. 164). If  only the environ- 
mental  variances differ between laboratory and na- 
ture, (1 0)  alone suffices to estimate h;; without  mak- 
ing  this assumption, (3) and (10) can  be  solved 
together for y 2 h i  (see PROUT and BARKER 1989). 
Equation 10 can  also be used to estimate y2h; if the 
experiment is performed for different values  of r .  For 
example, this  can be done by substituting an estimate 
of aiL obtained when r = 0 into (10) for  a second 
experiment with r # 0, and solving for y2h;. More 
generally, (1 0 )  can be written as the regression equa- 
tion y = Bo + P0Plx + e, where y is a sample  covariance 
between  full  sibs, x is the corresponding value  of r ,  P o  
= 1/2uiL, = y 2 h i ,  e is a residual, and  the equation is 
nonlinear in the parameters. For experiments having 
different values  of r ,  nonlinear least squares or similar 
methods might be used to estimate PO and P I .  Each 
experiment could  also provide a separate estimate of 
the offspring-midparent regression (l), and estimates 
of y 2 h i  derived from these  could  be compared with 
those derived from sib  covariances (1 0). One source 
of  discrepancy  between these different estimates  of 
y2h: is dominance variance,  which does not enter  into 
the regression estimate, but does affect  sib  covariances 
[( 10) assumes no dominance].  If the two  kinds  of 
estimates do not differ statistically, data from all  of 
the experiments could  be  combined in one analysis to 
estimate a lower bound for h$ (GIANOLA 1979). Alter- 
natively, one may  wish to avoid  this use  of assortative 
mating if dominance or common environments are 
suspected  of contributing to full-sib  covariances. As- 
sortative mating also  complicates the analysis  of  mul- 
tiple traits and genetic correlations. 

These derivations for assortative mating depend 
critically on the assumption that  the correlation r 
between sire and dam  phenotypes is caused by assort- 
ment on the particular trait measured, and does not 
arise indirectly from assortment on any other trait (cf. 
FALCONER 1981, pp. 161-162). Under this  assump- 
tion, the resulting correlation between sire and dam 
breeding values for this trait depends only on its 
heritability. Effects  of assortment with  respect to one 
trait on  the breeding values  of a second trait, however, 
depend on both the heritability of the first trait and 
its genetic correlation with the second trait. For ex- 
ample, (8) through (10) apply whether “L” and “N” 
are different traits in the same environment, the same 
trait in different environments, or different traits in 
different environments, as  long  as r measures the 
correlation between sire and dam for trait N ,  and  the 
phenotype of N was the criterion for assortative  mat- 
ing. If, however, the assortment criterion was the 
phenotype of  some other  trait, then (8) and (10) may 
be invalid, and offspring-midparent regressions  can 
be changed by assortative mating. An extreme exam- 

ple will make  this clear. Suppose that  the criterion for 
assortment is a non-heritable trait environmentally 
correlated with N .  The sire and dam phenotypes for 
N will be correlated because  of their environmental 
correlations with the assortment criterion, so a non- 
zero r could be calculated  between sire and dam 
phenotypes for N .  This r would  affect the variance of 
the midparent values for N as  shown  in (9). The 
appropriate r for (8), however,  would  be zero, because 
assortment by a non-heritable trait will not affect the 
breeding values  of  any trait. In this example, there- 
fore, assortative mating would change the offspring- 
midparent regression  slope,  because its denominator 
(9) would  be changed, but its numerator (8) would 
not. As this example shows, the causal paths that 
generate r are important, so one cannot simply  meas- 
ure  a correlation between  sire and dam and insert the 
resulting r into  the formulae. If a correlation is ob- 
served  between  sires and dams that have paired nat- 
urally,  application  of (8) through (10) assumes that 
the measured trait,  and  no  other, was the criterion of 
assortment. 

GENETIC  CORRELATION 

Next, consider two traits in nature, X and Y,  and 
their homologous  expressions  in the laboratory envi- 
ronment, X ’  and Y’ .  The lower bounds on the herit- 
abilities h: and h? estimated from (3) can  sometimes 
be combined with an estimate of phenotypic correla- 
tion to determine the sign  of the additive genetic 
correlation in nature. Let e2 = 1 - h2 ,  and let pe be 
the “environmental” correlation [including nonaddi- 
tive genetic covariance (FALCONER 1981, p. 282)] 
between X and Y in nature. As before, additive genetic 
correlation will be represented by y, but now  with 
subscripts to indicate the traits and environments in- 
volved. 

The phenotypic correlation in nature, pp, is a 
weighted  sum  of the genetic and environmental cor- 
relations: 

pp = h x r x r h r  + expeey. (1 1) 

A lower bound for h2 provides an upper bound for 
e* = 1 - h2,  so the estimated lower bounds for h2 
from (3) can  be  used together with the fact that lpe l  
G 1  to bound expcey. By setting bounds on expeey, we 
can  sometimes  show that y x ~  has the same  sign  as pp. 
The maximum environmental contribution to pp oc- 
curs when pC has the same  sign  as pp and I pe I = 1. If 

lPpl > 4 1  - h:)(l - G), (1 2) 

Pp’ > (1 - - h?), (13) 

or equivalently, 

then environmental correlation cannot account for 
the magnitude of the phenotypic correlation. The 
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additional  correlation must therefore  be  genetic,  and 
yxy must therefore have the same sign as p p  when (1  3) 
is true. The use  of estimated lower bounds  for h2 
from  (3) in (1 3) will provide  a very conservative test. 
Alternatively, we could set bounds  for yxY by finding 
the minimum and maximum of 

J ( l  - h.$)(l - h;) 
hxhv 

Pp f 

for allowable values of h2,  i.e., values  of h,' and  h; 
between unity and  the minima estimated  from  (3). 
Another lower bound  for y x y  could be  obtained by 
using (1)  and  (3)  to  estimate  bounds  for  the  genetic 
correlations between traits in different  environments, 
which could be  large  enough to place a lower limit on 
the genetic correlation in nature. Unfortunately, un- 
less heritabilities are atypically high,  a lower bound 
obtained by this method would probably be too low 
to be useful. 

Assortative mating will complicate analyses  of ge- 
netic correlation because only one of the traits X or Y 
can be used as the assortment  criterion. Equations 8 
and 10 will therefore  not generally apply to  the  other 
trait,  and y 2 h i  cannot  be  estimated  for this second 
trait without additional  information or assumptions. 
Because  of this, assortative mating  should probably be 
avoided if more  than  one  trait is to be analyzed. 

An alternative to  (1 3-14) is to  ignore  differences 
between environments and apply the usual formula 
for estimating genetic correlation between traits, as- 
suming that  parents  and offspring were measured in 
the same environment (FALCONER 1981).  COYNE  and 
BEECHAM (1987,  Table  4)  estimated  genetic  correla- 
tions in nature as the arithmetic mean of the two 
reciprocal between-trait  offspring-midparent covari- 
ances divided by the geometric mean of the within- 
trait  offspring-midparent covariances. This formula es- 
timates '/2(axay,yxy, + ax. a~x,y)/Jaxax'ayay,yxx,yw,, 
where a denotes  the  additive  genetic  standard devi- 
ation. The usefulness of this estimate of yxy de- 
pends critically on  the magnitude of genotype-envi- 
ronment  interaction, because the quantity  estimated 
contains neither  the  desired  between-trait  genetic 
correlation in nature, yxy, nor  the  between-trait 
genetic correlation in the  laboratory, yx,Y,. 

EXAMPLES 

We have applied  these  methods to  data  from  COYNE 
and BEECHAM (1  987)  on wing length and bristle count 
(sum of fourth  and fifth  abdominal segments) for 
Drosophila  melanogaster. Data from two experiments 
were kindly provided by J. COYNE. In  the first (exper- 
iment  1 A, 142 families, 2  offspring of each sex per 
family), offspring of wild-caught parents were raised 
in the laboratory. In  the second experiment  (1 B, 159 
families, 2  offspring of each sex per family), parents 
and  their offspring were  both raised in the laboratory. 

Before computing estimates, Wright's modification of 
the logarithmic transformation (FALCONER 198  1, p. 
266) was applied  to equalize within-environment 
phenotypic variances between the sexes. This trans- 
formation uses the  ratio of the intercept and slope 
from  the regression of standard deviation on mean to 
compute  a value to be  added  to observations before 
log-transforming. Very nearly the same ratio was ob- 
tained  for  the two environments  (-0.6894 and 
-0.6776). The average of these (-0.6835) was added 
to both the  natural  and laboratory  trait values, and 
the  natural logs of these sums were the traits analyzed. 
This transformation  resulted in nearly equal  pheno- 
typic variances for  the two sexes within environments. 
A  square-root  transformation was used to decrease 
differences in variance for  the bristle counts (SOKAL 
and ROHLF 1981). 

bbL.pN, was computed as the squared sample regres- 
sion  of  family means in the laboratory on midparent 
in nature  from  experiment 1A. V p N  was estimated as 
the variance of the  midparent in experiment 1A mul- 
tiplied by 2/(1 + r ) ,  where r was the  correlation 
between dam and sire. V A L  was obtained  from  exper- 
iment 1B by multiplying the covariance between off- 
spring mean and  midparent by 2/(  1 + r ) ,  where r was 
again the phenotypic  correlation  between  sire and 
dam. We used r in these calculations to avoid com- 
puting  separate  phenotypic variances for sires and 
dams. This involves no approximation. In  general, 
though, our analyses of heritability and genetic  cor- 
relation were only approximate, because we assumed 
that  the  trait being analyzed was also the criterion of 
assortment. In these  experiments,  however, assorta- 
tive mating was  by general size instead of the meas- 
ured traits  (COYNE and BEECHAM 1987, p. 729). Be- 
cause the correlations were low, this approximation 
may not have greatly affected the results. 

An estimate of the distribution of (3) was obtained 
by bootstrapping (EFRON 1982; RIPLEY 1987). Each 
bootstrap sample was drawn  from the  data by sam- 
pling (with replacement)  142 times from  the  142 
families in experiment lA ,  and  159 times from  the 
159 families in experiment lB,  assuming independ- 
ence of the two experiments. The estimate  (3) was 
computed directly from  the  data  and also from each 
of 1000  bootstrap samples. The bias-corrected per- 
centile method (EFRON 1982, p. 82) was used to obtain 
approximate  confidence limits from  the  bootstrap dis- 
tribution,  and  the closest bootstrap value to  the bias- 
corrected  fiftieth  percentile was taken  as the  bootstrap 
estimate of the  parameter (column 2 in Tables  1 and 
2). A problem  that can arise in the  bootstrapping  (and 
also in direct  estimation) is that  the V A L  estimate can 
sometimes be negative. This happens when the labo- 
ratory  parent-offspring regression slope for  the sam- 
ple is negative. Also, if this slope is very  close to zero, 
extreme estimates of y 2 h i  that  are well outside the 
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TABLE 1 

Heritability analysis of D. melanogaster wing lengths and bristle counts 

Bootstrap y2hk (bias-corrected  percentile method)” 

Trait 
Direct estimate Bootstrap Upper and lower 95% Lower (one-tailed) 

of r2hk estimate limits 95% limit h$b b m L .  PM 

Males 
Wing  length 0.1253 0.1188 0.0106 0.3790 0.0206 0.260 0.180 1.44 
Bristle count 0.61  18 0.5800 0.1135 2. I984 0.1660 0.323 0.444 0.73 

Wing  length 0.2487 0.2492 0.0375 0.6982 0.0605 0.248 0.248 1.00 
Bristle count 0.3596 0.3524 0.0468 0.1444 0.0705 0.564 0.451 1.25 

Females 

a Bootstrap analyses are each  based on 1000 bootstrap samples. 
h$ = &/U’N. 

e k = ~aL/(l/oaiv). 

TABLE 2 

Bootstrap analyses of genetic correlation 

Bias-corrected  percentile method“ 

Direct Bootstrap Upper and lower 95% limits Lower  (one-tailed) 
Trait estimate estimate 95% limit 

Male  wing and bristle 
rP 0.3  128  0.3098  0.2060  0.401 1 0.2252 
Wing: y’hf 0.1253 0.1  199 0.0 124 0.3804 0.0 184 
Bristle: r’hf 0.61 18 0.6241 0.1311 2.3380 0.1939 
r: - (1 - hi)(l - h$) -0.24  17 -0.2539 -0.6858 1.0776 -0.6359 

Female wing and bristle 
rP 0.3128  0.3096  0.21  13  0.401 8 0.2243 
Wing: r’hf 0.2487 0.2543 0.0542 0.7003 0.07  18 
Bristle: r’hf 0.3596 0.3739 0.0390 1.268 1 0.0852 
6 - (1 - hi)(l - h:) -0.3833 -0.4 1 19 -0.7676 0.0970 -0.7403 

4th- and 5th-segment  bristle counts (sexes pooled) 
rP 0.4900  0.4841  0.3881  0.5742  0.4042 
Seg. 4:  y’hf 0.449 1 0.4207 0.0 196 2.1767 0.0484 
Seg. 5:  y’hk 0.3551 0.3487 0.0579 1.0148 0.0886 
r j  - ( 1  - hi)(1 - h$) -0. I 152 -0.1658 -0.7019 0.6 184 -0.6  189 

Simulated data for 150 families 
rP 0.9028  0.9024  0.8839  0.9  183  0.8849 
Trait X r’hf 0.36 1 1 0.3501 0.1248 0.7793 0.1487 
Trait Y: r’hf 0.348 1 0.3457 0.1382 0.762 1 0.1624 
r j  - ( 1  - hi)(l - h$) 0.3985 0.3775 0.0698 0.7214 0.1086 

Bootstrap analyses are each  based on 1000 bootstrap samples. 

zero-to-one range of  possible parameter values  can 
occur. For  male  bristle count, we obtained 4 negative 
bootstrap estimates  of V A L  out of 1000,  and  a few 
extreme bootstrap estimates  of 7%; indicated that  the 
corresponding V A L  estimates  must  have  been  very  close 
to zero. Here, negative  estimates  of V A L  corresponded 
to  the extremes of sampling  variance from the off- 
spring-midparent distribution, and  contributed to the 
extreme tail  of the bootstrapped distribution. 

Results are shown  in Table  1 and Figure 1. All of 
the bootstrap estimates of y2h$, the lower bound for 
heritability in nature, are significantly greater than 
zero at  the  5% level. All of our examples  yielded 
estimates of &oL.pN) corresponding to positive  values 
of y. Table 1 also  shows  estimates  of h; = &/a&, 
&oL.pN), and the ratio k = C T A L / ( ~ U A N ) .  k was  less than 
one for bristle count in  males and slightly  less than 

one for wing length in  females.  According to LANDE’S 
criterion (COYNE and BEECHAM 1987), &oL.pN) is there- 
fore a lower bound for h; only for bristle count in 
males and wing length in  females.  For  these  cases, 
with k < 1, our lower bound r2h$ is higher than the 
other two approximations, as  it  must  be (from 4), 
although for female  wing length the  three approxi- 
mations are within rounding error of  each other. 
Comparison  of our results with  those  of COYNE and 
BEECHAM (1987) is complicated by a transposition  of 
numbers in the appendix of that paper (0.000977 and 
0.00157 were interchanged), and  a misprint in their 
Table 4 (J. COYNE, personal communication). The 
values  of k calculated from their table 4, after cor- 
recting the misprint (0.00120 should  have  been 
0.001 57), are 1.61 for wing length and  1.03 for bristle 
count. Their results will also differ from ours because 
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FIGURE 1.-Distribution of 1000 y‘hR estimates for female D. 
mdanogaster bristle counts,  each calculated from a separate boot- 
strap sample. 

we analyzed sexes separately and used different  trans- 
formations. Our estimated lower bounds  cannot  prove 
that a  trait is  less heritable in nature  than in the 
laboratory, so we provide no  support  for  COYNE  and 
BEECHAM’S (1987) conclusion that this is so for wing 
length. Their general  result,  however, that these  traits 
are heritable in nature, is supported by our analyses. 

For comparison with the  bootstrap results, we also 
obtained  approximate  standard  errors  for some of our 
y2hi  estimates by the  delta  method (KENDALL and 
STUART 1969, p. 23 1). We subtracted twice the ap- 
proximate  standard error from  the  direct estimate of 
r2hi to obtain  approximate lower confidence limits. 
For the cases examined,  these  were  negative (e.g., 
-0.384 for bristle count in males), and well below the 
bootstrap estimates, perhaps because the  strong right- 
skew of the sample statistic, as  indicated by the boot- 
strap results  (Figure l),  requires asymmetrical confi- 
dence intervals. 

We also used (1 3) to examine  correlations  between 
wing length and bristle count separately for males and 
females, as well as the correlation  between the  fourth- 
and fifth-segment bristle counts  for pooled data. (Sex- 
specific offspring  data were not available for bristle 
counts  for  the  separate segments.) To do this, we 
bootstrapped  an  estimate of pp’ - (1 - h:)( 1 - h?) to 
test against the one-tailed alternative hypothesis that 
this quantity was greater  than zero. (1 - h:) and (1 - 
h;) were estimated by subtracting  from  1  the r2h; and 
r2h; estimates obtained  as  above,  but  here  both  traits 
were bootstrapped at  the same  time, so that  the indi- 
vidual bootstrap estimates for  the two traits were 
calculated from  the same  bootstrap samples of fami- 
lies. Also, a  bootstrap  estimate of pp’ was obtained at 
the same  time,  from the same  bootstrap sample of 
families. For  a given bootstrap sample, the correlation 
between X and Y was computed  separately for sires 
and dams in nature, each correlation was transformed 
to Fisher’s z (SOKAL and ROHLF 198  1, p. 583),  and 
the average of these two z-values was back-trans- 

formed  to r. The square of this r was the estimate of 
p;. These  procedures yielded an  estimate of p; - (1 - 
hi) (  1 - h?) for each bootstrap sample. If the fifth bias- 
corrected  percentile of the  bootstrap estimates ex- 
ceeded zero, we would conclude that  the genetic 
correlation in nature had the same sign as pp. These 
analyses were approximate, because we have assumed 
that each trait was the  criterion  for  assortative  mating. 

Results of these analyses are shown in table 2. None 
of  the  bootstrap  estimates of pp’ - (1 - hi)(l - h?) 
were greater  than zero, so we could not  conclude that 
the genetic  correlation in nature was positive for  these 
traits. In these  correlation examples, however, either 
the heritability estimate, or the phenotypic  correla- 
tion, or both, were relatively low. Given the very 
conservative nature of this  test, the lack of statistical 
significance is not  surprising. Cases  in which both 
heritabilities and correlations are higher  might yield 
statistically significant results. 

To demonstrate this, we generated artificial data 
for  150 families corresponding to  the design of ex- 
periment  1 A, and  150  corresponding to 1 B. We as- 
sumed heritabilities of 0.5 in nature  and  0.56 in the 
laboratory, yxy  = yx,y, = yxx, = yw, = 0.9,  environ- 
mental  correlations of 0.9 in nature  and 0.86 in the 
laboratory,  and  that 5 offspring were measured per 
family. Six artificial data values per family (two traits 
for sire, dam,  and mean of  5  offspring) were generated 
from  a  multivariate  normal  distribution with covari- 
ance  determined by the hypothetical genetic  parame- 
ters assuming no intentional assortative mating. 
Means, variances, correlations, and parent-offspring 
regressions from the artificial data were checked 
against the hypothetical parametric values. The sim- 
ulated  data  were  then analyzed in the same way as the 
fly data. All of the results  (Table  2) were significant, 
and only one  of  the  1000  bootstrap estimates of pp’ - 
(1 - h:)( 1 - h?) was  less than zero. In another analysis 
of only 100 simulated families, the correlation test 
was not significant. The  results show that  although 
the test is not very powerful, it is sometimes possible 
to make  a  reliable  statement about  the sign  of the 
genetic  correlation in nature if the heritabilities and 
correlations are high  enough,  and if enough families 
are measured. 
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